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SPECIAL:
QUALITY ASSURANCE

The collection and interpretation of process data supports producers of safety-relevant rubber 

products in ensuring a constant high quality © iStock

Technical rubber products, such as 
gaskets, dampers or connectors, are 

critical in many applications for the 
proper and reliable operation of sys-
tems, equipment or vehicles. Neverthe-
less, economic and environmental fac-
tors are forcing manufacturers to inte-
grate ever more functions into their 
components with ever lower resource 
consumption [1, 2]. Here, manufacturers 
are supported in continuing to ensure a 

constantly high quality by the collec-
tion and interpretation of process data 
[3–5].

The iQ clamp control assistance sys-
tem of Engel Austria GmbH with mold 
breathing, provides a useful signal that 
enables automatic clamping force opti-
mization. It also facilitates monitoring of 
the production process and manual opti-
mization of quality-relevant parameters, 
such as changeover point and holding 

pressure time. It was developed for pro-
cessing thermoplastics, where it is already 
widely used [6, 7].

As part of a scientific study, the sys-
tem was evaluated for elastomers. 
Chemical crosslinking poses a challenge 
for this application. The goal of trials by 
the project partners, Engel, Polymer 
Competence Center Leoben (PCCL) and 
Montan University Leoben (MUL), was to 
detect critical process deviations in the 
manufacture of rubber parts in real time 
using the mold breathing signal to de-
tect parts out of tolerance already dur-
ing the manufacturing process without 
an additional manual quality control 
step. To simulate process deviations, the 
mold temperature was deliberately in-
creased during injection molding with-
out adjusting the crosslinking time ac-
cordingly. This causes an impermissible 
change in the dynamic-mechanical 
properties of the parts, equivalent to 
producing rejects as a result of process 
disturbances.

The process monitoring is performed 
with the aid of PCA-based methods (prin-
cipal component analysis). These are ma-
chine-learning methods and are capable 
of utilizing clear correlations between dif-
ferent process signals – e. g. mold breath-
ing (Fig. 1). This allows the error identifica-
tion rate to be significantly improved 
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Determining Dynamic Material 
 Behavior

The dynamic-mechanical properties of 
the parts are investigated with an elec-
trodynamic test system, type Instron Elec-
troPuls E3000 (manufacturer: Illinois Tool 
Works). The test method used can deter-
mine the characteristic material behavior 
in the pressure oscillating load range. The 
material’s response to the introduced 
load is determined as a characteristic 
value of the tangent of the loss angle 
tan(δ), which describes the ratio between 
plastic and elastic material behavior. It 
thereby provides useful information 
about the degree of crosslinking.

The tan(δ) values determined in the 
dynamic tests, as expected, correlate 
 during the test with the measured mold 
temperature from Figure 2. An increase of 
tan(δ) means an increase of the plastic 
components, e. g. because of a lower de-
gree of crosslinking  under the changed 
crosslinking conditions (Fig. 3a).

compared to standard methods, and tem-
perature-related process disturbances to 
be visualized.

To allow the PCA, and therefore the 
correlation between the process and 
quality data in the production process, to 
be performed, a training dataset must be 
generated from the process data for ac-
ceptable parts. This training set, which is 
used as a basis for the subsequent inline 
error identification, is determined experi-
mentally.

Trainings Set as a Basis for Subsequent 
Inline Error Identification

The tests were performed in Engel’s 
technical center on an e-victory 740/220 
injection molding machine with a maxi-
mum clamping force of 2200 kN. For the 
mold temperature control, heating 
platens with electrical heating elements 
were used, of which the setpoint values 
could be changed by controlling the in-
jection molding machine. A carbon 
black-filled nitrile-butadiene rubber 
(NBR, manufacturer: SKF Sealing Sol-
utions Austria) that is typical for indus-
trial applications was processed into 
sample parts. In preliminary tests, set-
tings were found for all process par-
ameters, which ensure a stable part pro-
duction process (Table 1). The heating 
time was chosen so that, at the point of 
demolding at a mold temperature of 
160 °C, the parts have a degree of cross-
linking of 90 %.

The settings were kept constant over 
20 cycles, in order to generate training 
data in cycles 5 to 15 after a short tran-
sient oscillation. A constant temperature 
of 163 °C was established, which was 
measured with the mold temperature 
sensor (Fig. 2). From cycle 21, the setpoint 
value of the heating elements was in-
creased to 180 °C, causing the measured 
maximum mold temperature also to rise. 
From cycle 52, the control temperature of 
the heating elements is reduced to 160 °C 
again.

With the increase of the setpoint tem-
perature, unexpected temperature devi-
ations resulting from possible malfunc-
tions of the heating or thermal elements 
were simulated. On this basis, the thresh-
old value for impermissible changes of 
part quality, as well as the response beha-
vior of the process monitoring methods, 
were investigated.

In the training phase (cycles 5 to 15), 
tan(δ) has a mean value of 0.209, with a 
standard deviation (σ) of 0.002. Starting 
from this, a tolerance range of ±3 σ is de-
fined. If a part has a value outside this 
range, it is to be considered an unaccept-
able part. In the time sequence of the 
test cycles, this range is left as from cycle 
23 and only consistently reached again 
with cycle 58. The object of statistical 
process monitoring systems – in this case 
PCA – is now, while the process is run-
ning, to use the process parameters to 
identify whether the part quality lies 
within the permissible process window. 
For assessing the investigated monitor-
ing methods, the individual cycles were 
marked as acceptable or unacceptable 
parts corresponding to the marked con-
trol limits.

Correlation between Mold Breathing 
and Cavity Pressure

To confirm that mold breathing is suit-
able for error recognition, the correlation 
between the breathing signal and the 
cavity pressure was first investigated in 
practical tests (Fig. 4). It is conspicuous 
that the mold breathing signal only 
shows significant deflections when the 
mold is almost full, while the cavity press-
ure rises as soon as the flow front reaches 
the sensor (Fig . 4a).

This behavior can be expected since, 
besides the pressure, mold breathing also 
takes into account the projected, already 
filled  surface area. At the switchover point, 
on the other hand, the peaks of both sig-
nals are equally pronounced and can 
therefore be exactly evaluated. If the peaks 
of the two signals for all cycles are 

Mold height after closing Mold compression
under clamping force 

Mold compression
Mold breathing 

Mold
breathing 

Fig. 1. Mold breathing: The mold is compressed by the build-up of the clamping force. During 

filling, the resulting part generates an opening force, which is counteracted by the compression. 

The opening force is proportional to the cavity pressure and to the projected surface area  

Source: Engel; graphic: © Hanser

Table 1. In preliminary tests, settings ensuring 

a stable manufacturing process were found for 

all process parameters. These parameters were 

held constant in all experiments Source: PCCL

Parameter

Cylinder temperature [°C]

Screw speed during metering [ms-1]

Backpressure [bar]

Injection volume flow rate [cm3s-1]

Holding pressure [bar]

Holding pressure duration [s]

Heating time [s]

Setpoint  
value

80

0.16

150

10

350

35

300

»
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plotted one on top of the other (Fig. 4b), a 
linear relationship can be clearly seen.

Process Monitoring with Principal 
Component Analysis

Processes with multiple variables can be 
suitably monitored using multivariate 
statistical methods [8, 9]. For the tests, a 
PCA-based approach (Info Box) was 
chosen to reliably identify process fluctu-
ations, and therefore quality fluctuations. 
The recorded process variables, with the 
exception of the mold temperature, are 
then processed by principal component 
analysis, and the SPE (squared predictive 
error) statistics for each test cycle are 
computed (Fig. 3b). Cycles 5 to 15 were 
used as training data. A common, unilat-
eral intervention limit is calculated from 
these using the PCA method. If the SPE 
statistics of a cycle lie beyond this limit, 
the part is identified as probably unac-
ceptable. Here, the common evaluation 
of the process variables is found to make 
the change in mold temperature visible 
in a statistically significant way, without 
the need to measure it directly. The 
change of mold temperature is rapidly 
identified; only from cycle 55 does the 
system return to normal operation.

The correct classification rate, i. e. the 
proportion of cycles that are in each case 
correctly assigned to acceptable or unac-
ceptable parts, is 85 % in these experi-
ments. The basis for decision-making here 
lies in the violation of the tan(δ)) interven-
tion limits. The 15 % incorrect classifications 
are all cycles that ought to be unaccept-
able parts according to PCA, but are ac-
ceptable parts according to tan(δ). The 
monitoring system would thus be oversen-

sitive. However, the incorrectly classified 
unacceptable parts are underlain by critical 
process deviations that are correctly recog-
nized by the system and do not have an 
impact on the quality feature tan(δ) that is 
specifically investigated, but can bring 
other quality features out of tolerance.

All the incorrectly classified data are 
identified with hollow markers (Fig. 3). The 
process monitoring system thus classifies 
cycles 3 and 4 as errors (Fig. 3a), which can 
be attributed to process conditions at the 
start of the test that have clearly not yet 
settled to the steady state. Despite the re-
turn to normal process conditions from 
cycle 51, the dynamic properties of the 
parts only lie within the control limits 
again after a delay. It is conspicuous that 
cycles 60 and 62 are qualified as unaccept-
able parts, although the measured mold 
temperature is already in the range of nor-
mal conditions again at 160 °C. The system 
thus also responds to other process dis-
turbances. A comparison with Figure 3b 
shows that exactly these two cycles have 
higher tan(δ) values than adjacent cycles.

Something similar can be seen with 
cycle 23, the tan(δ) value of which is 
lower than that of the adjacent cycles, 
and also the SPE statistics lie below the in-
tervention limit. Also in the case of ac-
ceptable parts, there seems to be a cer-
tain relationship between the SPE stat-
istics and part quality according to tan(δ).

In general, the examples show that 
despite a strong correlation, none of the 
evaluated process signals is able to rep-
resent the crosslinking process abso-
lutely. All the variables recorded in the 
experiments describe changes of physi-
cal properties of the rubber, especially 
the flow behavior. However, if the prop-

Fig. 2. The maximum mold temperature at the cycle end follows immediately after the setpoint 

values of the heating elements Source: PCCL; graphic: © Hanser
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erties of the chemical crosslinking are 
not in a linear relationship with the 
physical, the part properties that are pri-
marily determined by the degree of 
crosslinking cannot be clearly predicted. 
If all the process signals as well as the 
multivariate monitoring indicate that the 
flow properties have changed, even if 
the predicted tan(δ), which is deter-
mined principally by the curing reaction, 
lies within the intervention limits, then 
detailed part checking should be per-
formed. Only then can it be assessed 
whether the unexpected process fluctu-
ations are uncritical or whether they lead 
to rejects.

Summary

Based on the iQ clamp control intelligent 
assistance system, it was possible, using 
principal component analysis, to set up a 
multivariate process monitoring system 

for rubber injection molding that im-
mediately identifies changes in the pro-
cess conditions, and classifies the corre-
sponding molded parts as unacceptable. 
The advantages of this system lie in the 
low training effort and the possibility of 
simultaneously processing multiple pro-
cess variables. Additional information 
about the significantly better perform-
ance compared with standard methods 
can be requested from the authors. The 
challenge in elastomer injection molding 

consists in the fact that most available pro-
cess signals correlate strongly with the 
flow properties of the materials, however 
only weakly with the chemical reactivity, 
which further sets limits on process signal-
based fault identification. The system de-
veloped by Engel, PCCL and MUL shows 
trends in process fluctuations even before 
they have affected the part quality. This 
opens up great potential for optimizing 
series processes in the rubber-processing 
industry. W

PCA Principal Component Analysis
Principal component analysis is a dimensionality reduction method for increasing the 

 defect recognition rate during process monitoring. At the same time, the complexity can 

also be reduced. Its particular suitability for industrial processes lies in the fact that it can 

eliminate linear dependencies between process signals. More detailed insights into the 

methodology and other application reports can be found in Russel, Chiang et al., Yang, 

Chen, et. al. and others [4, 10 – 13].

Fig. 3. The tan(δ) values of the elastomer parts are strongly influenced by the mold temperature (left). SPE statistics allow changes in the process 

conditions potentially leading to rejects to be recognized (right) [9] Source: PCCL; graphic: © Hanser
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Fig. 4. Mold breathing responds with a delay compared to the cavity pressure, but then simultaneously reaches a pronounced peak (left). Maxima of 

mold breathing and cavity pressure are strongly positively correlated (right) Source: PCCL; graphic: © Hanser
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